The University of Edinburgh's Neural MT Systems for WMT17

نویسندگان

  • Rico Sennrich
  • Alexandra Birch
  • Anna Currey
  • Ulrich Germann
  • Barry Haddow
  • Kenneth Heafield
  • Antonio Valerio Miceli Barone
  • Philip Williams
چکیده

This paper describes the University of Edinburgh’s submissions to the WMT17 shared news translation and biomedical translation tasks. We participated in 12 translation directions for news, translating between English and Czech, German, Latvian, Russian, Turkish and Chinese. For the biomedical task we submitted systems for English to Czech, German, Polish and Romanian. Our systems are neural machine translation systems trained with Nematus, an attentional encoder-decoder. We follow our setup from last year and build BPE-based models with parallel and backtranslated monolingual training data. Novelties this year include the use of deep architectures, layer normalization, and more compact models due to weight tying and improvements in BPE segmentations. We perform extensive ablative experiments, reporting on the effectivenes of layer normalization, deep architectures, and different ensembling techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results of the WMT17 Metrics Shared Task

This paper presents the results of the WMT17 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT17 news translation task and Neural MT training task. We collected scores of 14 metrics from 8 research groups. In addition to that, we computed scores of 7 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The...

متن کامل

Sheffield MultiMT: Using Object Posterior Predictions for Multimodal Machine Translation

This paper describes the University of Sheffield’s submission to the WMT17 Multimodal Machine Translation shared task. We participated in Task 1 to develop an MT system to translate an image description from English to German and French, given its corresponding image. Our proposed systems are based on the state-of-the-art Neural Machine Translation approach. We investigate the effect of replaci...

متن کامل

Findings of the 2017 Conference on Machine Translation (WMT17)

This paper presents the results of the WMT17 shared tasks, which included three machine translation (MT) tasks (news, biomedical, and multimodal), two evaluation tasks (metrics and run-time estimation of MT quality), an automatic post-editing task, a neural MT training task, and a bandit learning task.

متن کامل

Results of the WMT17 Neural MT Training Task

This paper presents the results of the WMT17 Neural MT Training Task. The objective of this task is to explore the methods of training a fixed neural architecture, aiming primarily at the best translation quality and, as a secondary goal, shorter training time. Task participants were provided with a complete neural machine translation system, fixed training data and the configuration of the net...

متن کامل

The UMD Neural Machine Translation Systems at WMT17 Bandit Learning Task

We describe the University of Maryland machine translation systems submitted to the WMT17 German-English Bandit Learning Task. The task is to adapt a translation system to a new domain, using only bandit feedback: the system receives a German sentence to translate, produces an English sentence, and only gets a scalar score as feedback. Targeting these two challenges (adaptation and bandit learn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017